Tras explorar las bases de la cinemática en los tres primeros capítulos del bloque, en el último introdujimos un concepto fundamental, el de fuerza, y hablamos sobre sus propiedades básicas. Además, mencionamos los tres principios de la dinámica newtoniana y nos dedicamos en más profundidad al primero de los tres, el principio de inercia establecido por primera vez por Galileo Galilei y refinado por Isaac Newton. El capítulo de hoy estará dedicado íntegramente a enunciar el segundo principio de la dinámica y explorar sus consecuencias sobre el mundo que nos rodea, además de utilizarlo para definir la unidad de fuerza.
Pero antes, como siempre, la solución al desafío de la última entrada.
Solución al desafío 4 - ¿Tienes un movimiento uniforme?
En el desafío del capítulo anterior planteábamos tres preguntas cualitativas:
En primer lugar, ¿qué fuerzas no despreciables actúan sobre ti ahora mismo?
Como pasa tantas veces en Física, no hay una única respuesta válida, puesto que “despreciable” es siempre un término relativo, que depende de cómo de precisos queramos ser y cuál es el contexto… sí, sí, ya lo sé, una pregunta ambigua, pero la intención era simplemente hacerte pensar. Veamos una posible respuesta razonable.
Si estás de pie o sentado –y, si no lo estás, ¿qué diablos estás haciendo mientras lees esto?– sobre ti actúan dos fuerzas bastante considerables: una es tu peso, es decir, la atracción gravitatoria que la Tierra ejerce sobre ti; en el capítulo anterior vimos que se trata de una de las cuatro interacciones fundamentales, y la notas porque la Tierra es gigantesca (no la notas, por ejemplo, con tu reloj ni tus zapatos).
Evidentemente, si sólo existiera esa fuerza “no despreciable”, te hundirías hacia el centro de la Tierra como una piedra en un estanque, con lo que debe haber algo más. Esa segunda fuerza es la que ejerce la silla sobre tu trasero, el suelo sobre tus pies o lo que sea que te sostiene ahora mismo, y que básicamente soporta tu peso. Si recuerdas las cuatro interacciones fundamentales, en este caso se trata de la fuerza electromagnética –la repulsión entre electrones del suelo/silla/etc. y los de tu cuerpo, en este caso–.
Desde luego, hay más fuerzas que actúan sobre ti: la presión atmosférica es una de ellas, aunque no la notemos salvo cuando cambia bruscamente. Sin embargo, ahora mismo esta fuerza ejercida por el aire no afecta a tu movimiento. También sufres más interacciones gravitatorias: con la Luna, el Sol, tus calcetines y la vecina del cuarto. Pero estas otras fuerzas también son suficientemente pequeñas como para que podamos ignorarlas.
En segundo lugar, ¿te encuentras ahora mismo realizando un movimiento uniforme? ¿por qué sí o por qué no?
La respuesta estricta es que no, no estás realizando un movimiento uniforme. Ya hablamos del carácter relativo del movimiento al empezar el bloque y de las razones por las que hablar de reposo o movimiento absolutos es absurdo, y al hacerlo mencionamos ya varios movimientos no uniformes que realizas ahora mismo: la Tierra gira sobre su eje y tú con ella, alrededor del Sol y tú con ella, alrededor del centro de la Vía Láctea y tú con ella, etc. De modo que realizas una superposición de movimientos curvilíneos que no son, evidentemente, una línea recta con velocidad constante.
Si lo piensas, esto significa que la fuerza neta sobre ti ahora mismo no puede ser nula, algo que raras veces se menciona en el colegio. ¡Recuerda el primer principio! Si la fuerza sobre ti fuera cero, realizarías un movimiento uniforme, pero no lo realizas, luego debes estar sufriendo una fuerza total no nula. Por ejemplo, debido al giro de la Tierra, tu peso cambia de dirección constantemente –aunque muy despacio, claro– y “caes” con el suelo según la Tiera gira.
En tercer lugar, ¿sería posible considerar una respuesta diferente a la pregunta anterior dependiendo de cuáles fuesen nuestras necesidades al estudiarte como cuerpo móvil?
Pues hombre, claro: todos los efectos que he mencionado y que hacen que no realices verdaderamente un movimiento uniforme son leves y se trata de giros que tardan bastante en realizarse. Además, muchos objetos a tu alrededor realizan exactamente los mismos giros, con lo que si queremos estudiar tu movimiento en una habitación, sería absurdo considerar esas desviaciones del movimiento uniforme.
¿Cuándo podemos entonces considerarte realizando un movimiento uniforme sin tener que preocuparnos de lo demás? Cuando se trate de tiempos relativamente cortos y no te estés moviendo distancias tan grandes que el giro sea diferente para ti y los objetos que te rodean. Por ejemplo, podemos olvidarnos de estas sutilezas si queremos ver si lanzas una pelota de baloncesto y logras encestar, pero no podemos si queremos estudiar el vuelo de un avión que va de Ciudad del Cabo a Berlín.
La moraleja es, como casi siempre, que las herramientas conceptuales de la Física son precisamente eso, y debemos utilizar las más simples que sirvan a nuestro propósito –que suele ser tratar de predecir cómo va a comportarse un sistema físico en el tiempo–.