El Tamiz

Antes simplista que incomprensible

¿En qué consiste una Resonancia Magnética Nuclear (RMN)?

Este artículo es el tercero de la “mini-serie de las tomografías” dedicada a la Tomografía por Emisión de Positrones (TEP), [Tomografía Axial Computarizada (TAC)](https://eltamiz.com/2008/01/22/¿en-que-consiste-una-tomografia-axial-computarizada-tac/ “”), la Resonancia Magnética Nuclear (RMN), Imagen por Resonancia Magnética Nuclear (IRMN) o Tomografía por Resonancia Magnética (TRM) y, en un mes o dos, la ecografía. Como hicimos en los otros dos casos, hablaremos sobre los fundamentos físicos en los que se basa, cómo funciona técnicamente, para qué sirve y qué peligros entraña. Ojito a la secuencia de “rodajas” de una cabeza humana, que es algo grimosa pero fascinante. Yo juraría que es de Homer Simpson:

Cerebro RMN

Secuencia de RMN del cerebro humano. Crédito: Wikipedia/GPL

¿Sabes por qué la RMN hace ese ruido endiablado cuando funciona? ¿Y que, si te han hecho una, probablemente has estado rodeado por helio líquido a -269 ºC? ¿Quieres ver vídeos que muestran la potencia de los imanes superconductores empleados en esta técnica? Pues entonces sigue leyendo.

Cuántica sin fórmulas - El principio de incertidumbre de Heisenberg (I)

Continuamos hoy nuestro viaje por las procelosas aguas de la mecánica cuántica en la serie Cuántica sin fórmulas. Si no has leído los anteriores artículos de esta serie es muy difícil que éste te ayude a entender nada; si es así, te recomiendo encarecidamente que empieces la serie desde el principio.

En las anteriores entradas de la serie hemos hablado acerca de lo que se conoce hoy en día como cuántica antigua, la cual había llegado en 1924 a una suerte de “callejón sin salida” tras la publicación de la tesis de Louis de Broglie, en la que postulaba la doble naturaleza corpuscular y ondulatoria de la materia. Bien, se tenían “parches” (la hipótesis de Planck, el átomo de Bohr, el efecto fotoeléctrico y la propia hipótesis de de Broglie) a las teorías clásicas, pero ¿cómo ir más allá? Para describir el Universo, ¿se utilizarían las ecuaciones de Newton o Maxwell sabiendo que no lo describen correctamente? ¿cómo podían incluirse en ellas los efectos cuánticos?

Hacía falta una formulación teórica coherente: no una teoría clásica parcheada, sino una base matemática completa que describiera el mundo de acuerdo con las teorías cuánticas. Dos verdaderos genios elaboraron sendas formulaciones matemáticas que concordaban perfectamente con los resultados experimentales obtenidos hasta entonces: Werner Heisenberg y Erwin Schrödinger. El primero en hacerlo fue Heisenberg, y una de las consecuencias inevitables de su formulación haría temblar otro de los pilares de la física clásica. Hoy hablaremos brevemente de la mecánica matricial del genial alemán y más en profundidad de esa consecuencia: el principio de incertidumbre de Heisenberg.

La vida privada de las estrellas - Los agujeros negros

Libro disponible:
La serie completa está disponible como libro en tapa dura y como libro electrónico.
Versión en vídeo:
Este artículo está disponible también en vídeo.

En el último artículo de La vida privada de las estrellas hablamos acerca de las estrellas de neutrones. Como espero que recuerdes, se trataba de la “última esperanza” de una estrella masiva que se colapsa para no continuar haciéndolo indefinidamente. La razón era la presión de neutrones degenerados, que actuaba como una especie de fuerza repulsiva que mantenía a los neutrones separados unos de otros (aunque con una densidad monstruosa) y sostenía la integridad de la estrella.

Agujero con disco

Agujero negro estelar con estrella compañera, disco de acrecimiento y chorros de gas. Versión a 3000x2400 aquí.

Sin embargo, como mencionamos en aquella entrada, la presión de neutrones degenerados tiene un límite: si la masa de la estrella de neutrones es suficientemente grande (más allá del límite de Tolman-Oppenheimer-Volkoff), nada puede compensar la inimaginable presión gravitatoria sobre el centro, y la estrella se colapsa. No se colapsa “hasta que los neutrones se tocan”, o “hasta que los neutrones se fracturan en quarks”. No hay ningún “hasta”: la estrella se “dobla” sobre sí misma como una hoja de papel que se dobla por la mitad una y otra y otra vez, infinitas veces. El resultado es, naturalmente, algo muy extraño: un agujero negro.

Vídeos - Galileo vicit

Hace ya algún tiempo que no mostramos ningún vídeo, de modo que aquí tenéis un par de ellos “espaciales”. Los vídeos relacionados con el espacio suelen ser interesantes porque muestran cosas que no solemos experimentar, algunas de las cuales van contra nuestra intuición (¡tan útil unas veces y tan puñetera otras!). Los dos de hoy son de la misión Apolo XV de 1971 a la Luna. Pero antes, como siempre, un poco de información para que disfrutes realmente de los vídeos.

Falacias - Las sustancias radiactivas brillan

Como sabéis los “habituales”, en Falacias tratamos de desmontar mitos e ideas falsas más o menos extendidas utilizando el razonamiento lógico cuando es posible. Por cierto, si no conoces esta serie y piensas que el nombre de “Falacias” es incorrecto porque esa palabra tiene un significado diferente en el DRAE, o bien crees que me las doy de iluminado y nadie cree estas cosas, te pido que leas la descripción de la serie antes de seguir.

La Falacia de hoy tiene que ver con la radiactividad. En muchas películas de cine y televisión se ven sustancias radiactivas –por ejemplo, barras de uranio, residuos nucleares, etc.– que brillan con un color verdoso o azulado (según la versión). La idea viene a ser más o menos ésta: cuando algo es radiactivo emite radiación con tal energía que brilla en la oscuridad o incluso a la luz del día con luz verde (o en algunas versiones, azul).

Mentira.