File:SIM neoproto.ogv

De Wikimedia Commons, el repositorio multimedia libre
Saltar a: navegación, buscar
SIM_neoproto.ogv(Archivo de video Ogg Theora, tamaño 20s, 512×480 píxeles, 2,04 Mbps)

Sumario [editar]

Descripción
English: In order to better understand the climatic processes that may have been responsible for producing the snowball Earth intervals and the subsequent recovery, we used the GISS GCM to conduct a series of climate simulations of the Varanger glaciation. Paleoclimate modeling presents some unique challenges not posed by climate studies of the near future, such as a reduced luminosity of the Sun. Other climate forcings such as the amount of atmospheric carbon dioxide are not well constrained by the geologic record, and so for the major climate forcings we wanted to examine, we selected arbitrary values based upon other climatological or geological considerations.

The key climate forcings we altered in our simulations were:

  • Solar Luminosity: The energy output of the Sun was about 4% less 600 million years ago than it is now.
  • Geographic Distribution: The locations and shapes of the continents were quite different 600 million years ago. We used a continental distribution based upon the available geologic evidence.
  • Atmospheric CO2: The extreme nature of the snowball Earth intervals suggests that these periods were times of reduced greenhouse gases such as carbon dioxide. We ran simulations with atmospheric CO2 levels set to 315 parts per million (the value measured in 1958), 140 ppm (half the pre-industrial value), and 40 ppm (an extreme example).
  • Ocean Heat Transport: We simulated the potential effects of decreased and increased heat transports by the ocean from the tropics toward the poles using values 50% less and 50% greater than the modern global average.

We found that no single one of these forcings yielded surface air temperatures and snowfall rates that would allow snow to accumulate on low-latitude continents, as the geologic record indicates. The reduced solar luminosity and 40 ppm carbon dioxide simulations did, however, show that snow and ice accumulations on land in mid-latitudes could have occurred during a snowball Earth interval if either of these conditions actually existed.

Combining climate forcings causes further cooling and extends the annual average freeze line, as well as snow and ice accumulations, into the outskirts of the tropics. For example, experiments combining reduced solar luminosity with either 140 ppm atmospheric CO2 or reduced ocean heat transports produced cooling patterns similar to the experiment using just the 40 ppm atmospheric CO2 altered forcing.

Ultimately, only the most extreme scenarios in our study yielded tropical conditions that were cold enough to permit significant snow and ice accumulation on the low latitude continents. With atmospheric CO2, solar luminosity and ocean heat transports all reduced together, sea ice never completely covered the tropical oceans. With as much as 30% of the oceans remaining ice-free, the snowball Earth may instead have been more of a slushball.

In the last few years other researchers using different climate models have found similar, but not identical, results. In general, though, it appears that the more explicitly the study represents the ocean physics in the model, the more difficult it becomes to freeze over the oceans at lower latitudes. Modeling results suggest, therefore, that during periods of extreme cold, low-latitude continental ice sheets may be easier to produce than a global ocean ice cover — leaving breathing space for life in an almost unimaginably cold time..
Español: Resultados de la simulación del modelo climatico GISS GCM que recrea los principales forzantes del clima terrestre durante el Neoproterozoico, a saber: una distribución de las masas continentales basada en la fracturación de Rodinia, una radiación solar un 6% más débil, una concentración de CO2 de 40 ppm y un transporte oceanico reducido. La simulacion se prolongó hasta obtenerse un equilibrio. El modelo muestra como la combinación de todos esos facturos produce un efecto de albedo descontrolado que genera una capa de hielo salvo en los trópicos.
Fecha
Fuente http://www.giss.nasa.gov/research/briefs/sohl_01/
Autor Linda Sohl and Mark Chandler

Licencia: [editar]

Public domain Este archivo es de dominio público porque fue creado por la NASA. Las políticas sobre copyright de la NASA estipulan que «el material de la NASA no está protegido con copyright a menos que se indique lo contrario». (Políticas sobre copyright de la NASA o Políticas sobre la utilización de imágenes del Jet Propulsion Laboratory).
NASA logo.svg
Dialog-warning.svg
Advertencias:
  • El uso del logotipo de la NASA (incluyendo el logotipo actual y los anteriores) está restringido.
  • El sitio web de la NASA almacena un gran número de imágenes del Programa Espacial de la URSS, de la Agencia Espacial Federal Rusa y otras agencias espaciales no-estadounidenses. Estas imágenes no son de dominio público.
  • Material del Telescopio espacial Hubble puede tener copyright si no proviene explícitamente del Space Telescope Science Institute. [1]
  • Todo el material creado por la sonda espacial SOHO está protegido por copyright y requiere permiso para ser utilizado con fines comerciales no-educacionales. [2]
  • Las imágenes que figuran en el sitio web Astronomy Picture of the Day (APOD) pueden tener copyright. [3]

Historial del archivo

Haz clic sobre una fecha/hora para ver el archivo a esa fecha.

Fecha y horaMiniaturaDimensionesUsuarioComentario
act17:12 30 jul 200920s, 512 × 480 (4,79 MB)Inland (Discusión | contribuciones){{Information |Description={{en|1=Varanger simulation which combines reduced solar luminosity, 40 ppm CO2, and reduced ocean heat transport. The simulation runs 60 model years from initial, non-snowball conditions until an equilibrium result is obtained.}
  • No puedes sobrescribir este archivo.

No hay páginas que enlacen a esta imagen.

Uso de archivo global

Los siguientes wiki usan este archivo:

Estado de transcodificación

Actualizar el estado de transcodificación
EstadoDescripción derivada de transcodificaciónDescargar el derivado
Transcodificación completada 03:06, 15 November 2012WebM para la web (360P)
Transcodificación completada 15:49, 9 November 2012Vídeo Ogg para la web (480P)
Transcodificación completada 11:21, 21 November 2012WebM para la web (480P)